SNC 1D1 MASS, VOLUME AND DENSITY OF THREE DIFFERENT SUBSTANCES

Reading a Graduated Cylinder:

Record the volume indicated on each of the above graduated cylinders. Include ONE uncertain digit. Note that the scale is different for each cylinder.

_ g.

Reading a Balance:

What is the mass reading on the balance below? Include ONE uncertain digit.

INTRODUCTION:

Give background information on mass, volume, and density. (e.g. the definition of each, how each is calculated, the significance of each, etc. Also, give a general indication of what will be done in the experiment, and how it will be done.

PURPOSE:

Calculating mass and volume (for both regular and irregular solids) of 9 samples of three different substances; ______, ____, and ______ and analyzing the density curves for each substance.

HYPOTHESIS:

Make a general prediction of what the outcome of the lab will be.

APPARATUS:

100 mL graduated cylinder pan balance 1 large overflow can graph paper two 400 mL beakers water bottle three different sizes (small, me 50 mL graduated cylinder stand paper clip 1 small overflow can 10 mL graduated cylinder pencil, eraser, calculator, ruler 2 ring clamps wire gauze

three different sizes (small, medium, large) of 3 different substances - one of them consisting of regular shapes

METHOD: (make sure to rewrite it in the past tense!!)

- 1. Find the mass of each object and record these values in the table.
- 2. Find the volume of each of the regular-shaped objects using the method for regular solids, and record your results.
- 3. Find the volume of each of the irregular-shaped objects using the method for irregular solids, and record your results.
- 4. Plot the mass (g) versus volume (cm³) points for each substance on the same graph. Remember which is the dependent, and which is the independent variable!
- 5. Draw the line of best fit for each substance, using different colours to represent each of them. Provide a legend for your graph.

OBSERVATIONS:

Part A: Record your results in three tables like the following. Remember to give each table a title!

REGULAR	mass(g)	length (cm)		width (cm)	height (cm)	volume (cm ³)
SOLID (substance #1)			-			
small						
medium						
large						
IRREGULAR	mass	volume	volume (cm ³)			
SOLID #1 (Substance #2)	(g)	(mL)				
small						
medium						
large						
IRREGULAR	mass	volume	vo	ume (cm ³)		
SOLID #2 (Substance #3)	(g)	(mL)				
small						
medium						
large						

Part B: Include your graph in this section. Remember the 5 STEPS!!

DISCUSSION:

<u>**Part A:**</u> Include all volume calculations made in this section (e.g. $V = I \times w \times h$). Include all the density calculations made in this section (e.g. D = M/V)

Part B: Answer the following questions:

- 1. Which technique for measuring volume did you find to be more accurate? Why?
- 2. Explain why both mass/volume lines on the graph pass through the origin (0,0).
- 3. Calculate the AVERAGE density of each substance using all three samples of each substance.
- 4. From your graph determine which substance has a greater density? How did you come to this result? Where would the curve for lead be found on your graph? (Hint: use p. 36 of textbook)
- 5. From your graph, determine the volume of a 5 g sample of each substance?
- 6. Describe some possible sources of error in any one of the techniques used in the experiment.
- 7. In determining whether the three substances are made of the same material, which value mass, volume, or density is the only value that can be used? Explain.

CONCLUSION:

Write a general summary of all your lab results here. Restate the hypothesis and explain whether or not it was supported. Were there any problems/errors in the experimentation, or in the calculation of the results? What corrections should be made to avoid such problems?